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Theoretical and experimental
investigation of a passive nonlinear
vibration isolator using negative

stiffness structure1

Ren Xudong1, 2, Meng Lingshuai1, 3, Ren
Xudong1, 4

Abstract. This paper presents a passive nonlinear vibration isolator which is developed by
adding the symmetric negative stiffness structure to a vertical air spring. The restoring force and
stiffness of the air spring and the proposed nonlinear vibration isolator are derived. The dynamic
equations of the proposed nonlinear system and the single air spring system without the negative
stiffness structure under harmonic excitation are established. Based on the Harmonic Balance
Method, the absolute displacement transmissibility of the two systems is obtained. Considering
different excitation amplitudes and damping ratios, effects of the system imperfections on the
vibration isolation performance are studied.
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1. Introduction

Owing to the better vibration isolation performance than linear isolators in low
frequency region, passive nonlinear vibration isolators have drawn much attention
in the scientific and industrial fields. Ibrahim introduced the recent advances in pas-
sive nonlinear vibration isolators and described their main nonlinear characteristics
in detail [1]. A comprehensive review on passive nonlinear vibration isolators was
presented by Alabuzhev et al. [2], in which a large number of prototypes utilizing
negative stiffness structure have resulted in low frequency isolation and excellent
support capacity. Carrella et al. proposed a high-static-low-dynamic-stiffness iso-
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lator by connecting a vertical coil spring and two oblique coil springs [3]. Le and
Ahn proposed a nonlinear isolator using a horizontal spring in series with a bar as
negative stiffness structure [4]. Liu et al. carried out a research on Euler buckled
beam to work as negative stiffness corrector to realize a quasi-zero stiffness isolator
[5]. Meng et al. proposed a quasi-zero stiffness isolator by combining a disk spring
with a vertical linear spring [6].

In this paper, a novel passive nonlinear isolator including a vertical air spring
and two symmetric negative stiffness structures is studied. Each negative stiffness
structure configured by a horizontal air spring in series with a bar is connected to
the vertical air spring in parallel. The reason for using the horizontal air spring to
construct the negative stiffness structure is that it can enable the nonlinear forces in
horizontal direction to be adjusted flexibly by changing the internal pressure of the
air spring. Meanwhile, the negative stiffness structure with the air spring can exhibit
strongly nonlinearity. In addition, the vertical air spring can satisfy the practical
conditions of variable isolation masses by changing its internal pressure.

2. The characteristics of the air spring

A schematic model of an air spring is shown in Figure 1. The bottom plate of
the air spring is fixed, while the upper plate is mobile along the vertical axis under
the applied force P . By referring to the article [7], the internal pressure and volume
of the air spring satisfy the equation

(p+ pa)V χ = (p0 + pa)V χ0 , (1)

where V is the instantaneous effective volume, V0 is the initial volume of the air
spring in natural state, p is the instantaneous air pressure, pa is the standard atmo-
spheric pressure, p0 is the air pressure of initial state and χ is the specific heat ratio.
The value of χ depends on the deformation velocity of the air spring.

Fig. 1. Schematic representation of the air spring

Then, the restoring force of the air spring can be derived as

F = pAe =

[(
V0
V

)χ
(p0 + pa)− pa

]
Ae , (2)

where Ae is the effective area of the air spring.
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The relationship between the effective area Ae and the instantaneous deflection
δ of the air spring can be defined as

Ae = A0 + εδ , (3)

where A0 is the initial area of the air spring at natural state and ε is the rate of
change of the effective area with respect to δ.

By differentiating (2) with respect to the instantaneous deflection δ, the stiffness
of the air spring can be derived as

k =
dF

dδ
= Ae

dp

dδ
+ p

dAe

dδ
=

= −χAe (p0 + pa)
V χ0
V χ+1

dV

dδ
+

[(
V0
V

)χ
(p0 + pa)− pa

]
dAe

dδ
. (4)

Since the vibration amplitude of the air spring is very small, the following equa-
tions can be obtained,

V0
V
≈ 1 ⇒ Ae = − dV

dδ
. (5)

Combining (2)–(5), the stiffness of the air spring k can be derived as

k =
χε2 (p0 + pa)

V
δ2 +

2χεA0 (p0 + pa)

V
δ +

χA2
0 (p0 + pa)

V
+ pε . (6)

It can be seen obviously that the stiffness of the air spring is the quadratic
polynomial of the deflection. Then, the restoring force of the air spring can be
derived to be the cubic polynomial of the deflection as follow

F = k3δ
3 + k2δ

2 + k1δ + F0 , (7)

where k1, k2 and k3 are the stiffness coefficients, and F0 is constant.
Then, the stiffness of the air spring can be expressed by

k = 3k3δ
2 + 2k2δ + k1 . (8)

2.1. Experiment of the air spring

To measure the restoring force pertaining to the deflection, an experiment was
carried out by applying the axial force on the air spring. The air spring used in the
experiment is the 086060H-1 type manufactured by Xi’an Chenguang Rubber Cor-
poration. As shown in Fig. 2, the whole test system is composed of the Instron-5865
universal testing machine, the Bullhill2 data acquisition software and a computer.

In the experiment, it is necessary to check that the air spring is airtight after
inflated with a small amount of air firstly. Then, the air spring is inflated with
different initial air pressures, summarized in Table 1. After that, the test machine
is controlled to touch the upper plate of the air spring and set zero. By referring to
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[7], the loading and unloading velocity of 10mm/min and the displacement range of
20mm are selected in the test.

Fig. 2. Experimental setup for testing of the air spring

Table 1. Different initial air pressures of the air spring

Parameter Value

p0 0.2MPa, 0.25MPa, 0.3MPa, 0.35MPa,
0.4MPa, 0.45MPa, 0.5MPa,

The force-displacement curves of the air spring under different given initial air
pressures are plotted respectively in Fig. 3. It is worth noting that the force-
displacement curves can be approximated to be the cubic curves. According to
eg. (7), the stiffness coefficients are obtained in Table 2 after fitting the experimental
data with the least square method. As shown in Fig. 4, the fitted and experimental
force-displacement curves match exactly.

Fig. 3. Force-displacement curves of the air spring under different given initial air
pressures
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Fig. 4. Fitted (top) and experimental (bottom) force-displacement curves of the
air spring

Table 2. Stiffness coefficients of the air spring under different given initial air pressures

Initial air pressure (MPa) k3 k2 k1 F0

0.2 0.0813 –2.0179 51.355 1.7637
0.25 0.0959 –2.4404 63.578 0.4903
0.3 0.1046 –2.6944 74.345 –1.9068
0.35 0.1150 –2.9289 83.258 –0.1168
0.4 0.1198 –3.0494 92.496 0.6024
0.45 0.1324 –3.3959 103.24 –2.1531
0.5 0.1394 –3.5161 111.53 –0.5229

3. The proposed nonlinear vibration isolator

3.1. Analytical model of the isolator

The schematic view of the proposed nonlinear vibration isolator is shown in Fig. 5.
The three air springs in Fig. 5 are the same type presented in Section 2.
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Fig. 5. Schematic representation of the proposed nonlinear vibration isolator: top
left–isolator at the initial position, top right–isolator at the equilibrium position,

bottom–isolator under axial force

As shown in Fig. 5, top left part, under unloaded condition it can be assumed
that the three air springs inflated with the initial air pressure are in relaxing state at
the initial position. In this study, it is prospected that the hinge joints M and N of
the isolator loaded with an appropriate isolated mass can reach the position δ = δ0,
which is referred to be an equilibrium position while the bar is forced to be in the
horizontal position. Meanwhile, the vertical air spring gets the minimum stiffness
and supports the mass by itself at the equilibrium position as shown in Fig. 5, top
right part. Based on eq. (8), the deflection δ0 can be obtained as

δ0 = − k2
3k3

. (9)

In the vertical direction, the mass moves downwards x amounts from the equi-
librium position under the applied axial force Pe shown in Fig. 5, bottom part. The
restoring force of the isolator Fr includes the restoring force of the vertical air spring
Fv and the restoring force generated by the negative stiffness structure Fn, which
can be expressed by

Fr = Fv + Fn = Fv − 2Fh tan θ . (10)

Based on eq. (8), the restoring forces of the vertical air spring Fv and the hori-
zontal air spring Fh can be obtained as follows:

Fv = kv3 (x+ δ0)
3

+ kv2 (x+ δ0)
2

+ kv1 (x+ δ0) + Fv0 , (11)

Fh = kh3Q
3 + kh2Q

2 + kh1Q+ Fh0 , (12)

where Q =
√
L2 − x2 + h− b.
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Then, the restoring force of the isolator can be derived as

Fr = kv3x
3 + k∗v1x+ F ∗v0

− 2x√
L2 − x2

(
kh3Q

3 + kh2Q
2 + kh1Q+ Fh0

)
, (13)

where

k∗v1 =
3kv1kv3 − k2v2

3kv3
, F ∗v0 =

2k3v2 − 9kv1kv2kv3
27k2v3

+ Fv0 .

It is convenient to define the following non-dimensional parameters:

F̂r =
Fr

k∗v1h
, x̂ =

x

h
, λv3 =

kv3h
2

k∗v1
, F̂v0 =

F ∗v0
k∗v1h

, λh1 =
kh1
k∗v1

,

λh2 =
kh2h

k∗v1
, λh3 =

kh3h
2

k∗v1
, F̂h0 =

Fh0

k∗v1h
, α =

L

h
, β =

b

h
. (14)

The non-dimensional restoring force can be expressed by

F̂r = λv3x̂
3 + x̂+ F̂v0 −

− 2x̂√
(α2 − x̂2)3

(λh3U
3 + λh2U

2 + λh1U + F̂h0) , (15)

where U =
√
α2 − x̂2 + 1− β.

By differentiating eq. (15) with respect to the non-dimensional displacement x̂,
the non-dimensional stiffness of the isolator can be derived as

k̂ = 3λv3x̂
2 + 1−

− 2α2√
(a2 − x̂2)3

[
λh3U

3 + λh2U
2 + λh1U + F̂h0

]
+

2x̂2

α2 − x̂2
[
3λh3U

2 + 2λh2U + λh1
]
.

(16)
It is prospected that the isolator can get zero stiffness at the equilibrium position

i.e. x̂ = 0 in real operation. Based on eq. (16), the parameters need to satisfy the
condition that

2

α

[
λh3 (α+ 1− β)

3
)

+ λh2 (α+ 1− β)
2
)

+λh1 (α+ 1− β) + F̂h0

]
= 1 . (17)

3.2. Effects of the parameters on the isolator

Based on the above analysis, the internal pressure of the vertical air spring should
be fixed for the isolator loaded with a constant mass. It is also found that the non-
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dimensional restoring force and stiffness of the isolator are affected by the configura-
tive parameters α and β as well as the internal pressure of the horizontal air spring.
Besides, a conclusion can be drawn from eq. (17) that the value of the configurative
parameter β increases as α increases to enable the isolator to get the zero stiffness
at the equilibrium position, while the internal pressure of the horizontal air spring is
fixed. By using the values listed in Table 3, effects of the configurative parameters
α and β on the isolator are shown in Fig. 6. It is worth noting that the values of
α and β in Table 3 are derived by eqs. (17). By observing Fig. 6, one can conclude
that the isolator possesses smaller stiffness in the neighborhood of the equilibrium
position and larger region of smaller stiffness around the equilibrium position with
increasing α and β when the internal pressures of the air springs are fixed.

Fig. 6. Effects of the configurative parameters α and β on the isolator:
top–non-dimensional force-displacement curves, bottom–non-dimensional

stiffness-displacement curves

Figure 7 shows the non-dimensional force-displacement and stiffness-displacement
curves with different internal pressures of the horizontal air spring, in which the con-
figurative parameters α and β are fixed. The values of the parameters are listed in
Table 4. As the internal pressure increases, the stiffness of the isolator decreases
at the same position, which means that larger internal pressure of the horizontal
air spring results in larger negative stiffness in the vertical direction. Note that the
region of negative stiffness occurs when the internal pressure larger than 0.4MPa.
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Table 3. Values of the fixed internal pressures and the changing configurative parameters

Parameters Value

Internal pressure of vertical air
spring

0.25MPa

Internal pressure of horizontal
air spring

0.4MPa

Configurative parameters α = 0.3, β = 1.2123; α = 0.4, β = 1.2838;
α = 0.5, β = 1.3602; α = 0.6, β = 1.4407;
α = 0.7, β = 1.5242;

Fig. 7. Effects of the internal pressure of horizontal air spring on the isolator:
top–non-dimensional force-displacement curves, bottom–non-dimensional

stiffness-displacement curves
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Table 4. Values of the changing internal pressures and the fixed configurative parameters

Parameters Value

Internal pressure of vertical air
spring

0.25MPa

Internal pressure of horizontal
air spring

0.3MPa, 0.35MPa, 0.4MPa, 0.45MPa,
0.5MPa

Configurative parameters α = 0.7, β = 1.5242

4. Dynamic analysis

4.1. Approximation of the restoring force

The expression of the non-dimensional restoring force by substituting eq. (17)
into (15) is very complicated and can be expanded by using the Taylor series at the
equilibrium position. Then, the non-dimensional restoring force of the isolator can
be rewritten as

F̂rapp = F̂v0 + γx̂3 , (18)

where F̂rapp is the non-dimensional restoring force after approximation and the co-
efficient γ is

γ = λv3 +
1

α2

[
3λh3 (α+ 1− β)

2
+ 2λh2 (α+ 1− β) + λh1 −

1

2

]
. (19)

4.2. Dynamic modeling and solution

Going back to Fig. 5, bottom left part. It is assumed that the isolator loaded
with an appropriate mass can keep balance at the equilibrium position x̂ = 0. And
the stiffness of the isolator is zero at this position. The quantity of the mass should
satisfy the condition

mg = F ∗v0 . (20)

Then the nonlinear system which is configured by the nonlinear isolator and the
isolated mass is exposed to a harmonic displacement excitation z (t) = Z cos (ωt).
By using the Newton’s second law of motion, the dynamic equation of the nonlinear
system can be expressed by

mü+ cu̇+ k∗v1hγû
3 = mω2Z cos (ωt) , (21)

where u = x − z is the relative displacement. Combining it with eq. (14) and
introducing the following non-dimensional parameters

τ = ωnt, Ω =
ω

ωn
, ωn =

√
k∗v1
m
, û =

u

h
, ξ =

c

2mωn
, Ẑ =

Z

h
, (22)
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eq. (19) can be rewritten as the non-dimensional form:

û′′ + 2ξû′ + γû3 = Ω2Ẑ cos (Ωτ) . (23)

Considering that the nonlinear system may possess strong nonlinearity and the
frequency of response is predominantly the same as that of the harmonic excitation,
the Harmonic Balance Method is employed to get the approximate steady-state
solution. The steady-state solution of the nonlinear system can be assumed to be

û = A cos (Ωτ + ϕ) . (24)

After substituting eq. (24) into eq. (22) and neglecting the third harmonic and
equating the coefficients of the same harmonics, the steady-state solution is found
to satisfy

−Ω2A+
3

4
γA3 = Ω2Ẑ cos (ϕ) , −2ξΩA = Ω2Ẑ sin (ϕ) . (25)

Combining eqs. (25), one can get the implicit amplitude frequency equation of
the nonlinear system

9

16
γ2A6 − 3

2
γΩ2A4 + Ω2

(
Ω2 + 4ξ2

)
A2 − Ω4Ẑ2 = 0 . (26)

Then, the absolute displacement transmissibility is defined as the ratio of the
magnitude of the absolute displacement of the mass to that of the displacement
excitation. It can be given as

Tns =
|x̂|
|ẑ|

=
|û+ ẑ|
|ẑ|

=

√
A2 + Ẑ2 + 2AẐ cos (ϕ)

Ẑ
, (27)

where cos (ϕ) is defined by the first equation in (25).
As discussed above, the restoring force in the vertical direction given by the

negative stiffness structure is zero at the equilibrium position. If the negative stiffness
structure is removed at this position, the vertical air spring can support the mass
with the exact same deflection. Here, the system configured by the vertical air spring
and the mass is called the single air spring system. By introducing the same non-
dimensional parameters, the dynamic equation of the single air spring system under
the same excitation can be derived as

û′′ + 2ξû′ + λv3û
3 + û = Ω2Ẑ cos (Ωτ) . (28)

For the single air spring system, the steady-state solution can be obtained by
following the procedure above. The steady-state solution needs to satisfy

−Ω2A+
3

4
λv3A

3 +A = Ω2Ẑ cos (ϕ) , −2ξΩA = Ω2Ẑ sin (ϕ) . (29)
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The absolute displacement transmissibility of the single air spring system can be
expressed by

Tsass =
|x̂|
|ẑ|

=
|û+ ẑ|
|ẑ|

=

√
A2 + Ẑ2 + 2AẐ cos (ϕ)

Ẑ
, (30)

where cos (ϕ) is defined by the first equation in (29).

4.3. Effects of the system imperfections on the absolute dis-
placement transmissibility

Note that the internal pressure of the vertical air spring is set to be 0.25MPa,
the internal pressure of the horizontal air spring is set to be 0.4MPa, and the config-
urative parameters α = 0.7 and β = 1.5242 are selected. The absolute displacement
transmissibility results of the two systems under the same system imperfections are
plotted in Fig. 8 for comparison convenience.

Figure 8 shows the absolute displacement transmissibility of the two systems with
different excitation amplitudes Ẑ and a fixed damping ratio ξ = 0.04. It can be seen
that the absolute displacement transmissibility of the two systems are affected obvi-
ously with the increasing excitation amplitude. Larger excitation amplitude leads to
larger peak amplitude of the absolute displacement transmissibility. And unbounded
absolute displacement transmissibility may occur when the excitation amplitude is
relatively large. Moreover, the isolation performance of the nonlinear system can be
superior or inferior to the single air spring system depending on the frequency range
and excitation amplitude. For the two systems with same excitation amplitude, the
absolute displacement transmissibility of the nonlinear system is larger than that of
the single air spring system at lower frequencies. When the excitation frequency is
larger than the jump-down frequency of the nonlinear system, the absolute displace-
ment transmissibility of the nonlinear system will get smaller than that of the single
air spring system in a large frequency range. And the superiority of the nonlinear
system to the single air spring system is getting lower at higher frequencies. Be-
sides, the least frequency of the nonlinear system where a vibration can be isolated
increases as the excitation amplitude increases, which means that the excitation
amplitude should be limited in order to get a better isolation performance of the
nonlinear system.

Figure 9 shows the absolute displacement transmissibility of the two systems
with different damping ratios ξ and a fixed excitation amplitude Ẑ = 0.014. By
observing Fig. 4, the interactive feature of the absolute displacement transmissibility
between the two systems at different frequency regions with increasing damping
ratio is similar with that with decreasing excitation amplitude. It is also found that
larger damping ratio leads to smaller peak amplitude of the absolute displacement
transmissibility of the two systems. If the damping ratio is large enough, peak
amplitudes of the absolute displacement transmissibility for the nonlinear system
will not occur. Meanwhile, the unstable regions of the two systems are getting
smaller as the damping ratio increases. Based on above analysis, an appropriate
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Fig. 8. Absolute displacement transmissibility of the two systems with different
excitation amplitudes; ‘dotted line’ denotes unstable solution and ‘o’ denotes peak

amplitude of the transmissibility: top–Ẑ = 0.012, middle–Ẑ = 0.014,
bottom–Ẑ = 0.016

damping ratio should be chosen to improve the vibration isolation performance of
the nonlinear system.
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Fig. 9. Absolute displacement transmissibility of the two systems with different
damping ratios; ‘dotted line’ denotes unstable solution and ‘o’ denotes peak

amplitude of the transmissibility: top–ξ = 0.04, middle–ξ = 0.06, bottom–ξ = 0.08

5. Summary

In this paper, we introduce the theoretical investigation of a passive nonlinear
vibration isolator. The conclusion can be drawn that the nonlinear system can ex-
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hibit excellent isolation performance at lower frequency compared with the single
air spring system without the negative stiffness structure. Meanwhile, smaller peak
amplitude of the absolute displacement transmissibility and frequency where a vi-
bration can be isolated would be obtained for the nonlinear system with appropriate
excitation amplitude and larger damping ratio.
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